

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A CNDO CI Study of the Electronic Structure of Trans- and Cis-Diimide

B. Tinland^a

^a Section de Recherches de Mécanique Ondulatoire Appliquée Faculté des Sciences de Lyon 69, VILLEURBANNE, FRANCE

To cite this Article Tinland, B.(1970) 'A CNDO CI Study of the Electronic Structure of Trans- and Cis-Diimide', *Spectroscopy Letters*, 3: 2, 51 — 53

To link to this Article: DOI: 10.1080/00387017008075694

URL: <http://dx.doi.org/10.1080/00387017008075694>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A CNDO CI STUDY OF THE ELECTRONIC STRUCTURE
OF TRANS- AND CIS-DIIMIDE

B. Tinland

Section de Recherches de Mécanique Ondulatoire Appliquée
Faculté des Sciences de Lyon
69 . VILLEURBANNE . FRANCE

The electronic spectra of cis- and trans-HN=NH have been the subject of a number of studies. The most interesting work in this area is probably that of Robin, Hart and Kuebler¹. They studied the two isomers both experimentally and theoretically and attempted to correlate their electronic states with that of ethylene.

Most recently, Del Bene and Jaffé² introduced a modification of the well-known semiempirical CNDO/2 method in order to better calculate the electronic states of molecules. This new all valence electrons CNDO CI method proved very successful and appears to be very promising in predicting the electronic states of saturated as well as conjugated molecules. It was therefore of interest to apply this new method to the investigation of the electronic structure of diimide. The geometries were taken from the work of Robin et al.¹. The configuration interaction included all singly excited transitions.

The MO levels of diimide isomers and ethylene are listed in Table 1. In the ground states, all levels with negative energies are doubly filled.

The lowest computed transition energies are summarized in Table 2. The degeneracy of singlet and triplet $n \rightarrow \pi^*$ excited states is due to the fact that $K_{ij} = 0$ for these states².

Table 1. SCF Molecular orbital energies (ev)

character	cis-diimide	ethylene	trans-diimide
σ	-42.50	-34.30	-42.10
σ	-26.21	-29.25	-27.75
σ	-22.43	-20.72	-19.06
σ	-15.64	-15.73	-18.26
π	-14.16	-11.35	-14.12
σ	-12.61	-10.87	-11.96
π	+ 0.45	+ 1.62	+ 0.49
σ	+ 7.53	+ 4.33	+ 7.48
σ	+ 7.76	+ 5.70	+ 7.98
σ	+11.97	+ 6.88	+12.01
σ		+ 7.48	
σ		+11.39	

Table 2. Excited states (ev) and oscillator strengths

cis-diimide	ethylene	trans-diimide
singlets	singlets	singlets
3.40 (0.) $n \rightarrow \pi^*$	4.15 (0.) $\sigma \rightarrow \pi^*$	2.60 (0.) $n \rightarrow \pi^*$
5.98 (0.) $n \rightarrow \pi^*$	6.45 (0.16) $\pi \rightarrow \pi^*$	7.60 (0.18) $\pi \rightarrow \pi^*$
7.59 (0.18) $\pi \rightarrow \pi^*$	6.99 (0.) $\pi \rightarrow \sigma^*$	8.76 (0.) $n \rightarrow \pi^*$
11.55 (0.02) $n \rightarrow \pi^*$	7.32 (0.03) $\sigma \rightarrow \sigma^*$	10.06 (0.) $n \rightarrow \pi^*$
triplets	triplets	triplets
3.40 $n \rightarrow \pi^*$	3.61 $\pi \rightarrow \pi^*$	2.60 $n \rightarrow \pi^*$
4.50 $\pi \rightarrow \pi^*$	4.15 $\sigma \rightarrow \pi^*$	4.50 $\pi \rightarrow \pi^*$
5.98 $n \rightarrow \pi^*$	6.97 $\sigma \rightarrow \sigma^*$	8.76 $n \rightarrow \pi^*$
10.94 $n \rightarrow \sigma^*$	6.99 $\pi \rightarrow \sigma^*$	10.06 $n \rightarrow \pi^*$

ELECTRONIC STRUCTURE OF TRANS- AND CIS-DIIMIDE

Table 3. Atomic valence electron densities

cis-diimide		ethylene		trans-diimide	
N	5.088	C	4.151	N	5.097
H	0.911	H	0.925	H	0.903

The singlet excited states observed at about 3.5 ev in both cis- and trans-azoalkanes¹ are to be associated with the computed $n \rightarrow \pi^*$ states at 3.4 and 2.6 ev in the diimides. The computed transitions at 7.6, 8.76 and 10.06 ev in trans-diimide may also be correlated with the bands I, II and III at 6.7, 7.9 and 8.7 ev in trans-azomethane, since it is observed¹ that a decrease in the size of the substituent R in R-N=N-R results in a blue shift of these bands and an increase of the intensity of band I.

The computed dipole moment of cis-diimide is 3.63 D. which is near the value 3.94 D. obtained by Robin et al.¹

The trans form of the diimide is computed to be more stable than the cis form by 0.47 ev.

Applying Koopman's theorem³ we find that the computed ionization potentials of cis- and trans-diimide (12.61 and 11.96 ev, respectively) are somewhat greater than the experimental value (9.85 ev¹).

Acknowledgements. The calculations were carried out on the CDC 3600 computer of the CNRS. A grant of computer time from the CNRS is gratefully acknowledged.

REFERENCES

- 1 ROBIN, M.B., R.R. HART and N.A. KUEBLER, J. Am. Chem. Soc. 89(1967) 1564.
- 2 DEL BENE, J. and H.H. JAFFE, J. Chem. Physics 48 (1968) 1807.
- 3 KOOPMAN, T.A., Physica 1 (1933) 104.

Received February 20, 1970